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A B S T R A C T

Mangrove ecosystems are targeted for many conservation and rehabilitation efforts due to their ability to store
large amounts of carbon in their living biomass and soil. Traditional methods to monitor above-ground biomass
(AGB) rely on on-ground measurements, which are expensive, labour intensive and cover small spatial scales.
Structure from Motion and Multi-View Stereo reconstructions from Unmanned Aerial Vehicles imagery (UAV-
SfM) have the potential to increase fieldwork efficiency by providing a greater amount of spatial information in
less time. However, there is still a need to assess the ability of UAV-SfM to retrieve structural information of
mangrove forests, which could pose challenges in areas of high forest complexity and density.

In this study we successfully used UAV-SfM data to estimate height, canopy diameter and AGB of natural and
rehabilitated mangrove forests across two regions of the southeastern coast of Australia. We used a variable
window filter algorithm to detect trees with an 80% detection rate when considering the top canopy. Individual
tree canopy segmentation was performed using a marker-controlled watershed segmentation with two sets of
constraining markers: treetops and a minimum height below which a pixel is not considered part of a tree.

Direct comparison with on-ground measurements at the regional level showed no significant difference in tree
height and AGB medians when only top canopy was considered. Similarly, median canopy diameters were not
significantly different in natural areas of both regions, but significant differences were found in rehabilitated
areas. UAV-SfM estimates of AGB were on average 15% lower in natural areas and 10% higher in rehabilitated
areas when compared to on-ground measurements and followed a strong linear relationship close to the ideal
one-to-one relationship.

Additionally, we performed a cost-benefit analysis of the two methodologies. UAV-SfM methods can save
almost AU$ 50,000 per ha when compared to on-ground measurements and become cost-effective (based on
total costs) after just 15 days of surveys. The methods described in this study open the possibility for easily
repeatable, low-cost UAV-SfM surveys for local managers by providing a faster, more cost-effective approach for
monitoring mangrove forests over larger areas than traditional on-ground surveys while maintaining forest
inventory data accuracy in both natural and rehabilitated mangrove forests.

1. Introduction

Mangrove ecosystems provide unparalleled economically and eco-
logically critical services to coastal areas (Alongi, 2008), including: 1)
provisioning (Hemminga and Duarte, 2000); 2) coastal protection
(Badola and Hussain, 2005; Das and Vincent, 2009; Koch et al., 2009);
3) recreational and aesthetic uses (Bergstrom et al., 1990); and 4) soil
formation and carbon sequestration (Atwood et al., 2017; Donato et al.,
2011; Mcleod et al., 2011). Despite their importance they are one of the
most threatened and vulnerable ecosystems worldwide (Hamilton and

Casey, 2016; Thomas et al., 2017).
As they occur across the land-sea interface, mangrove forests are

subject to both terrestrial and marine pressures. A large percentage of
mangrove ecosystems have been altered, destroyed or degraded
worldwide as a result of anthropogenic impacts, particularly near po-
pulated areas (Clark and Johnston, 2016; Richards and Friess, 2016).
Consequently, mangrove ecosystems are the focus for many conserva-
tion and rehabilitation efforts (Duncan et al., 2016; Nam et al., 2016;
Ren et al., 2010), which require regular monitoring of the forest
structure characteristics for better management strategies. This is
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particularly relevant for any projects seeking to gain carbon credits for
mangrove rehabilitation under the impacts of climate change related
issues (sea level rise and changes in precipitation and temperature;
Ward et al., 2016).

Mangrove forest monitoring and management has traditionally re-
lied on regular on-ground surveys for collecting forest inventory data
(Nam et al., 2016; Ren et al., 2010). This data collection is important
because it provides a better understanding of species composition and
carbon biomass of the survey areas. However, these surveys usually
cover relatively small spatial scales (< 0.5 ha), and can often be ex-
pensive, labour intensive and time-consuming due to the tides, mud,
and general difficulty in accessing these remote coastal ecosystems (Lee
and Lunetta, 1995).

Remote Sensing data, on the other hand, provides a fast, cost-ef-
fective, and efficient method to estimate the biological, biophysical and
biochemical factors that translate into some of the services provided by
mangrove ecosystems (Giri, 2016; Pham et al., 2019). The type of re-
mote sensing platform (ground-based, airborne or satellite) and sensor
(photographic, LiDAR or radar) used depend on the scale and the goal
of the research (Wang et al., 2019). Remotely sensed satellite archive
data offer broad-scale (nation-wide) and long-term (up to 40 years)
monitoring for detection of change over time (Giri, 2016; Kuenzer et al.,
2011; Pham et al., 2019). However, it might not necessarily provide the
resolution and precision required for local accounting (Ruwaimana
et al., 2018). To increase spatial resolution while still covering large
areas, airborne LiDAR systems and ground-based platforms like ter-
restrial laser scanners have been used in the past for retrieval of forest
inventory data of coastal wetlands (Feliciano et al., 2014; Wannasiri
et al., 2013). However, they are expensive, not widely available, and
data management and processing is often difficult and requires spe-
cialized software (Wallace et al., 2016; Yin and Wang, 2019).

Unmanned aerial vehicles (UAVs) paired with Structure from
Motion and Multi-View Stereo photogrammetric procedures (from now
on UAV–SfM) have the potential to: 1) increase fieldwork efficiency by
collecting broader spatial information in less time than traditional
ground-based surveys (Dandois and Ellis, 2013; Messinger et al., 2016;
Murfitt et al., 2017), 2) increase spatial resolution obtained from sa-
tellite data while still covering large areas (Ruwaimana et al., 2018),
and 3) provide a more cost-effective approach than other airborne
systems like LiDAR or airborne photogrammetry while maintaining
accuracy and resolution (Dustin, 2015; Sankey et al., 2017).

In terrestrial forests, the implementation of high-resolution imagery
collected from low-cost UAVs is becoming an increasingly valuable tool
for mapping above-ground carbon stock (Dandois and Ellis, 2010;
Samiappan et al., 2016; Zahawi et al., 2015). Common forest inventory
data derived from UAV-SfM includes tree species, height, canopy dia-
meter and above-ground biomass (AGB), which can complement, and
eventually replace, traditional forest inventory techniques (Dandois and
Ellis, 2013; Messinger et al., 2016; Panagiotidis et al., 2017; Zarco-
Tejada et al., 2014). Overall, there is a general consensus that UAVs are
the most cost-effective solution for sites with an extent between 10 and
20 ha when compared to aircraft and satellite data (Dustin, 2015;
Manfreda et al., 2018; Matese et al., 2015). However, no cost-benefit
analysis has compared the benefits of using UAVs against on-ground
measurements in mangrove ecosystems to date.

Despite the importance of coastal wetlands for carbon accumulation
and other ecosystem services, there are few studies evaluating the use
of UAV-SfM approaches for assessing the biophysical and biochemical
properties of mangrove forests (Li et al., 2016; Navarro et al., 2019;
Otero et al., 2018; Tian et al., 2017; Yaney-Keller et al., 2019). Out of
these, only two have focused on retrieving mangrove forest inventory
data for estimating mangrove AGB (Navarro et al., 2019; Otero et al.,
2018). These studies demonstrated that UAV-SfM derived data has the
potential for estimating AGB from mangrove plantations, but were
unable to predict AGB from natural forests with densely packed man-
grove trees. Otero et al. (2018) retrieved information on height from

UAV-SfM data at a plantation and natural site with mixed results (only
the height medians from the plantation site were significantly similar).
Additionally, validation was achieved through visual interpretation of
the orthomosaic, with no direct plot by plot comparison between UAV-
SfM and field data. On the other hand, Navarro et al. (2019) managed
to perform a tree by tree comparison of UAV-SfM data vs field data for
two measurements: height and canopy diameter. However, this study is
based on trees from a mangrove plantation project< 8 years old with
clearly defined boundaries between trees. Furthermore, only canopy
diameter was not significantly different from on-ground measurements.
Consequently, the challenge to effectively estimate mangrove AGB from
UAV-SfM derived forest inventory data still remains.

In this study, we propose an approach that combines tree detection
and canopy segmentation algorithms applied to UAV-SfM data for
quantifying AGB of mangrove forests within natural and rehabilitated
(25+ years) areas of the southeastern coast of Australia, and compare it
to on-ground measurements at the plot level. Moreover, we perform the
first cost-benefit analysis to date of the two different methods (field
based measurements vs UAV-SfM data) in mangrove ecosystems to es-
timate above-ground biomass. The methods described in this study
provide local managers with a cost-effective approach for regular
monitoring of mangrove forests over larger areas than traditional on-
ground surveys while maintaining forest inventory data accuracy.

2. Materials and methods

2.1. Study area

We focused our research on two areas of the southeastern coast of
Australia: Western Port (WP) in southern Victoria (Fig. 1b) and Rich-
mond River Estuary (RRE) in northern New South Wales (Fig. 1c). WP is
a large tidal bay that covers around 680 km2, of which 270 km2 are
exposed mudflats at low tide. Mangrove ecosystems in WP are located
near the southernmost distribution of mangrove ecosystems in the
world and cover an area of around 1800 ha (Boon et al., 2011. Fig. 1d).
Air temperatures in WP can be as low as 0 °C during winter, making
mangrove survival very difficult (Macnae, 1966). As in most temperate
climates, the mangrove forests in this region are structurally homo-
geneous (only one species: Avicennia marina) and are considered shrub
or dwarf mangroves as their height only ranges from 1 to 3.5 m
(Vandervalk and Attiwill, 1984).

Mangrove forests in RRE, although still dominated by A. marina, are
more structurally complex, both in diversity (up to 3 other species:
Aegiceras corniculatum, Bruguiera gymnorrhiza and Excoecaria agallocha)
and height range (from 2 m up to 17 m). RRE is one of the major coastal
drainage systems in northern NSW with a catchment area of approxi-
mately 6850 km2 of which approximately 600 ha is mangroves (Russell,
2005). A substantial part of this area consists of restoration projects
dating as far back as 1991. Mangrove forests on these rehabilitated
areas usually have two distinct canopy stories: an upper one between
4 m and 8 m of height formed mainly by A. marina, and a lower one at
around 2 m dominated by A. corniculatum. UAV-SfM and on-ground
surveys were conducted at both natural and rehabilitated areas
(Fig. 1e).

2.2. Methods

We used a low cost UAV and the in-built RGB sensor to detect and
measure the structural characteristics of individual trees within man-
grove ecosystems in southeastern Australia. Along with the UAV ima-
gery, we collected ground data and validated the algorithm for esti-
mating number of trees, height, canopy diameter and above-ground
biomass. The workflow outlined in Fig. 2 was created to evaluate the
potential use of UAV-SfM to retrieve structure characteristics of the
mangrove forest.

A. Navarro, et al. Remote Sensing of Environment 242 (2020) 111747

2



Fig. 1. Location of the two study areas: d) Western Port, Victoria (b) and e) Richmond River Estuary, New South Wales (c). The red and yellow pins mark the areas
where UAV-SfM and field data were collected (Natural and Rehabilitated areas respectively). Water in dark grey, land in light grey and mangrove extent distribution
in black. f-n) zoomed in images over areas of interest (f-i Western Port; j-k Richmond River Estuary Natural areas and l-n Richmond River Estuary Rehabilitated
areas). White polygons show area surveyed by the UAV. Maps created using ArcGIS Pro (v.2.1.1; esri.com). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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2.2.1. Forestry field methods
Including both regions, a total of 9 survey areas and 41 plots (Fig. 1)

were located along a transect parallel to the coastline (at approximately
30 m intervals). In Richmond River Estuary, a total of twenty 10 × 10
m plots were distributed into five survey sites (three in rehabilitated
areas and two in natural areas). The remaining 21 plots were dis-
tributed into four survey sites in Western Port. Plot size in WP was
reduced to 10 × 2 m due to the higher mangrove vegetation density
typical of shrub/dwarf mangrove forests. Results are still comparable as
AGB was standardised to t/ha for analysis. We geolocated the four
corners of each plot using a real time kinematic global positioning
system (RTK GPS; Emlid Reach RS using the GPSnet-VIC and CORSnet-
NSW base station networks) with 3cm horizontal accuracy and 6 cm
vertical accuracy.

Forest inventory data were collected between March and May 2017.
In each plot, we measured the height, basal diameter, stem diameter
and average canopy diameter (calculated as the mean of the greatest
canopy width and its perpendicular canopy width) of every adult tree.
Heights under 2 m were measured using a tape measure, while heights
over 2 m were recorded using a compact laser rangefinder. When the
number of trees of a single species exceeded 50 trees per plot and trees
were homogeneous in height and canopy diameter (as it is often the
case of A. corniculatum on rehabilitated areas of RRE), all trees were
counted and a randomly selected subsample of 25 trees was measured.

2.2.2. UAV image acquisition
We acquired imagery data between January and May 2018 using a

DJI Phantom 4 Advanced quadcopter and the in-built 20 MP RGB
camera. The flight missions were designed using Pix4DCapture software
(Pix4D SA, Lausanne, Switzerland) in a cross-grid pattern to ensure a
better reconstruction of the 3D models (Nesbit and Hugenholtz, 2019).

We flew each site at an altitude of 30m above the ground with 85%
overlap and 70% sidelap and covered an area of approximately 1 ha
around each plot. Surveys were restricted to days with low wind speed
(< 15 knots or 7.7 m/s), no rain, and low tides to ensure weather
conditions did not interfere with data collection and processing.

Prior to flying, between 10 and 15 black and white checkerboard
targets were evenly placed at each site on the ground in open areas, and
marked with the RTK GPS to be used as ground control points (GCPs)
for accurate geo-referencing of the imagery.

2.2.3. Field data processing
Field-derived mangrove above-ground biomass was estimated at the

tree level using species-specific allometric equations for every dominant
structural form (tall vs shrub/dwarf mangroves) and species. As height
and canopy diameter are the only variables that can be obtained using
the UAV-SfM method, all the allometric equation chosen for this study
were derived using a combination of these two variables, which did not
interfere with our ability to estimate mangrove AGB (R2 0.96–0.99). In
WP, we used the allometric equation provided by Owers et al. (2018;
Table S2b: Region-specific equation for A. marina using only Height and
Crown area: AGB = exp (-5.39183 + 1.1847751 ⁎ log (H) +
1.1417521 * log (CA)) * 1.088; where H is Height in cm and CA is
Crown Area in m2) for all adult mangroves. Whereas in RRE, the
methods used by Fu and Wu (2011) were applied for both A. marina, B.
gymnorrhiza and E. agallocha (similar morphology; AGB = 1.8247 *
(CD2*H)1.0202) and A. corniculatum (AGB = 3.1253 * (CD2*H)0.9063;
where CD is average Canopy Diameter in m and H is Height in m).

2.2.4. UAV data processing
Structure from Motion and Multi-View Stereo (SfM-MVS) proce-

dures were implemented within Pix4Dmapper software (v. 4.2.26,

Fig. 2. Workflow to evaluate the potential use of UAV-SfM based methods to estimate above-ground biomass of mangrove ecosystems in southern Australia.
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Pix4D SA, Lausanne, Switzerland) to create a 3D point cloud (average
density:> 4000 points/m3), a Digital Surface Model (DSM, Model de-
picting elevations of the top of reflective surfaces, such as vegetation)
and an orthomosaic image (both with an average ground sampling
distance of 0.8 cm per pixel). The SfM-MVS reconstruction works by
identifying and automatically tying keypoints on a set of overlapping
images (median of ~70,000 keypoints per image). A self-calibrating
bundle adjustment is then used to calibrate the camera parameters of
each image and derive a sparse set of 3D keypoints, which is then re-
fined using MVS techniques to generate high resolution densified point
cloud and estimate the 3-D point positions (Dandois and Ellis, 2010;
Westoby et al., 2012).

We manually identified and marked the GCPs in all available images
for high precision geo-referencing of all products. This allowed for the
corners of the on-ground survey plots to be located with high precision
for posterior comparison of tree metrics and above-ground biomass
estimates.

A Digital Terrain Model (DTM, a model depicting the geodesic
surface or bare land devoid of vegetation) was created by spatial in-
terpolation of the visible ground points (3D points intersecting the bare
land) at every survey site using a k-nearest neighbour approach with an
inverse-distance weighting (Number of k-nearest neighbours: 1000;
Power for inverse-distance weighting: 2). A randomly selected subset of
15% of the points from the 3D point cloud (~700 points/m3) was used
for classification into ground/not ground points using the progressive
morphological filter developed by Zhang et al. (2003) with a variable
window size (0.6, 1.4, 3.8, 11.0 and 32.6 m). The low gradient slope
natural to these ecosystems allowed us to choose very restrictive
threshold heights for every window size (0.05, 0.07, 0.11, 0.23 and
0.59 m, respectively) to effectively eliminate as much of the elevation
values intersecting vegetation as possible. The accuracy of the DTM was
evaluated using the Root Mean Square Error (RMSE) between the
height of the DTM and the correspondent height value from the GCPs.

Finally, we developed Canopy Height Models (CHM, a model of the
relative height of the trees within the study area) at an average re-
solution of 3.2 cm by subtracting the DTM values from the DSM using
max height metric. All 3D point cloud computations were performed
using the R package ‘lidR v2.0.0’ (Roussel and Auty, 2018). From the
CHMs, the following steps were performed for individual tree canopy
segmentation of every mangrove tree within the plots:

Step 1: The tree tops were detected using a local maximum function
that implements the variable window filter algorithm developed by
Popescu and Wynne (2004). A cell is tagged as a tree top when it is the
highest within the window. To compensate for varying canopy sizes,
the size of the moving circular window changes depending on the
height of the cell on which it is centered. The function used to de-
termine the variable window size was defined using the best fitting
model of the height and associated mean canopy diameter values ob-
tained from the on-ground data (Fig. 3). A different function was used
for WP (Fig. 3a), rehabilitated areas of RRE (Fig. 3b) and natural areas
of RRE (Fig. 3c).

Step 2: Individual tree canopy segmentation was performed to
outline crown shapes from the CHM using a marker-controlled wa-
tershed segmentation (Vincent and Soille, 1991) from the ‘imager’ R
package (Barthelme, 2018). The watershed transform is a label propa-
gation algorithm controlled by a priority map (using the treetop loca-
tions as seeds from which the objects can propagate). Neighbouring
pixels around the treetop will be added to the object/tree until another
object/tree or background is met.

Step 3: To avoid tagging underlying bush or saplings as part of the
main canopy of the mangrove trees, pixels below 0.8 times the max-
imum height of each tree were removed (Panagiotidis et al., 2017). We
determined this threshold value by testing a range of different height
values (0.5 to 0.9 times at 0.1 intervals). However, in sites where two
differentiated canopy stories co-exist (typically those in the re-
habilitated areas of RRE, with height differences of> 1 m), a different

value was chosen for the upper and lower canopy (0.6 and 0.8 times,
respectively).

Step 4: Preliminary visual analysis identified the potential for ca-
nopies of smaller overlapping trees to be omitted after Step 3.
Therefore, already detected tree canopies were buffered by 10 cm and
masked out from the CHMs and steps 1 to 3 were then repeated over the
remaining area to identify the potentially omitted tree canopies. A
buffer was necessary so that no immediate points around a tree (which
will be higher than neighbouring pixels if maximum crown was not
found within the top 20% of the tree height) were picked as treetops.
We tested 5, 10 and 20 cm buffers and found 10 cm to be the best buffer
(thin enough to not cover omitted trees and wide enough so that no
immediate points were picked as treetops). Extra iterations were not
necessary.

Step 5: Next, mangrove trees were discarded if: a) 50% or more of
their canopy fell outside the plot area; or b) their maximum height was
below 1 m (for WP, except for one plot where all tree heights ranged
between 0.7 and 1 m) and 1.3 m (for RRE). This height threshold was
chosen as a cut-off to separate adult mangrove trees from saplings and
was based on field data.

Step 6: Two measurements were then retrieved for canopy diameter:
the maximum width spanning the convex hull of a tree crown (calcu-
lated as the maximum distance between vertices) and the maximum
width distance that is perpendicular to the previous measurement
(adapted from ‘lakeMaxWidth’ function from ‘lakemorpho’ R package,
Hollister, 2018).

Step 7: Finally, mangrove AGB was estimated at the tree level using
the same species-specific allometric equation as with the on-ground
measurements. In WP, we used the allometric equation provided by
Owers et al. (2018, Table S2b: Region-specific equation for A. marina
using only Height and Crown area). In RRE, the same allometric
equation was used for A. marina, B. gymnorrhiza and E. agallocha (si-
milar morphology, Fu and Wu, 2011). A. corniculatum was only present
on rehabilitated areas of RRE and formed a differentiated canopy story
from the other 3 species (two to four meters lower in height). In these
areas, mangrove trees were separated into two categories according to
their height (based on field data) and a different allometric equation
was applied to A. corniculatum (Fu and Wu, 2011).

2.2.5. Statistical analyses
Mangrove tree density and height, canopy diameter and AGB

medians estimated from the UAV-SfM were compared to field data at
the plot level using linear regression models. A Shapiro-Wilk test
(Shapiro and Wilk, 1965) was used to test for normality of mangrove
tree height, canopy diameter and AGB distributions at the region level.
As all distributions were significantly different than normal distribution
(p-value < 0.05), a non-parametric test (Wilcoxon Rank-Sum test;
Wilcoxon, 1992) was used to compare UAV-SfM derived height, canopy
diameter and AGB medians to those measured in the field at the plot
level (an alpha level of< 0.05 was chosen as a cut-off to reject the null
hypothesis: the two samples come from the same distribution). All
analyses were performed using both: all trees measured and trees only
visible from the UAV point of view. All data processing and statistical
analyses were performed using R software (version 3.5.1; http://www.
r-project.org/).

2.2.6. Cost-benefit analysis
Two components were used for the cost-benefit analysis: costs as-

sociated with each method, and benefit assessment which was based on
cost savings, strengths and limitations of each method for AGB esti-
mation.

The cost for both methods incorporated three main components:
equipment (including software requirements); data acquisition and
preparation; and data processing and analysis. A summary of how the
costs were estimated for each component/subcomponent of both
methodologies can be found in Table 1. Costs were estimated in AU$/ha
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and based on the average annual salary of a Research Assistant in
Australia (AU$ 34.11 per hour) and on 100 days of surveys (based on
estimated UAV lifespan of 200 flight hours (pers. obs.) at an average of 2
flight hours per day). These monetary costs are compared to determine
the financial benefit of the UAV-SfM method.

Human resources for fieldwork were estimated based on a team of 2
people (for UAV surveys) and 5 people (for on-ground measurements)
and 8 h of work per day. A UAV-SfM data acquisition operation con-
sisted of flight planning, GCP deployment and RTK marking and UAV
flight. Total time for a single UAV operation was less than an hour and
covered an area of approximately 1 ha of forest. On-ground data ac-
quisition consisted of plot delineation and forest inventory data col-
lection and took an average of 2.5 h per plot (100 m2, estimates based
on the time it took a team of 5 people to survey the 41 plots present in
this study).

Human resources for data processing and analysis were estimated
based on 1 person for both methodologies. UAV-SfM data processing
and analysis consisted of: 1) GCP rectification; 2) Point cloud cleaning;
and 3) Model application. Each component takes approximately 15 min
per ha surveyed. The costs of doing the first survey of on-ground
measurements (a total of 0.2 ha) for the UAV-SfM model calibration
(function used for variable window filter in Step 1 and species com-
position) were also included into the UAV-SfM costs. On-ground data
processing consisted of data entry and took an average of 1 h per 100
m2 surveyed.

3. Results

3.1. UAV-SfM derived point clouds and Canopy Height Models

An average of 250 images per hectare were used to generate the
dense point clouds using SfM-MVS procedures. An orthomosaic image,
DSM, DTM and CHM were generated for every survey site with an
average pixel resolution of 3.2 cm (Fig. 4). The geometric accuracies of
the scene reconstructions averaged an RMS horizontal error (x, y) of
1.0 cm and RMS vertical error (z) of 1.2 cm. DTM generation averaged a
RMSE vertical error of 6.3 cm for WP, 9.0 cm for RRE (rehabilitated
areas) and 44.7 cm for RRE (natural areas) when compared to GCPs.

Mangrove trees in WP showed a homogeneous profile of heights due
to the slow growth rate characteristic of temperate climates, with trees
ranging from 1 to 3.5 m (Vandervalk and Attiwill, 1984, Fig. 4d). This
disposition allowed for almost all trees to be visible from UAV imagery,
with only saplings and 5% of adult trees under the main canopy not
recorded. On the other hand, mangrove trees in RRE showed a more
heterogeneous profile of heights, especially in rehabilitated areas where
two differentiated canopy stories can be found (Fig. 5). This variation in
canopy heights results in a relatively large percentage of the mangrove
trees from the lower canopy story not observable from the UAV (up to
30% in some rehabilitated areas). Even though this is a large percentage
of trees not being detected by the UAV-SfM method, these trees only
hold an average of 9.1% of the total plot-level AGB.

Fig. 3. Relationship between Canopy Diameter (measured as the mean of the greatest canopy width and its perpendicular canopy width) and Height from the on-
ground measurements for a) WP: ws = 0.647 * H – 0.073; b) RRE rehabilitated areas: ws = exp.(1.071 * ln (H) -1.365); and c) RRE natural areas: ws = 0.189 *
H2–0.702 * H + 1.453; where ws = Window Size (m) and H = Height (m).

Table 1
Components and subcomponents used for estimating the costs for each AGB estimation method.

Component Subcomponent Detailed costs

UAV-SfM method Field data method

(1) Equipment Equipment UAVs (2 DJI Phantom 4 Pro + 4 Batteries + 2 iPad Mini + 1 DJI Battery Charger + 4 sets
Propellers + 4 micro SD cards)
RTK GPS (1 Emlid Reach RS)

Tape measures
Rangefinder

Software Pix4D License NA
(2) Data acquisition and preparation Data acquisition Flight planning

GCP marking
UAV flight
Vehicle lease cost
Fuel cost

Plot delineation
On-ground measurements
Vehicle lease cost
Fuel cost

(3) Data processing and analysis Data processing GCP rectification
Point cloud cleaning
Model application

Data entry

Data analysis Allometric equations Allometric equations
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3.2. CHM derived forest inventory data

3.2.1. Number of trees
Results of the validation work that consisted of comparing on-

ground measured tree densities to UAV-SfM derived tree densities for
each of the 41 plots can be seen in Fig. 6. When considering only the top
canopy (Fig. 6b), the method performed well at low tree densities
(< 0.8 trees per m2), but oversaturated at higher tree densities, fol-
lowing an exponential relationship with an adjusted coefficient of de-
termination of 0.82 and p-value < 0.001.

3.2.2. Height and canopy diameter metrics
The mangrove tree height, mean canopy diameter and biomass data

measured in the field and from the CHMs are summarized in Table 2.
In WP, the tree heights from the on-ground measurements ranged

between 0.77 and 3.70 m, with a median height of 1.80 m. For the
CHM-based measurements, tree heights ranged between 0.71 and
3.33 m, with a median height of 1.80 m. The two distributions were not
significantly different (Wilcoxon Rank-Sum test, p-value = 0.389).

When considering all surveyed trees from the on-ground measure-
ments in RRE, the tree heights ranged between 1.3 and 12.4 m, with a
median height of 2.00 m. This value was found to be significantly

different than the one obtained from the CHM-based measurements
(2.12 m; Wilcoxon Rank-Sum test, p-value = 0.013). However, when
considering only the top canopy, median tree height for on-ground
measurements was 2.30 m, which was not significantly different from
the CHM-based measurements (2.64 m; Wilcoxon Rank-Sum test, p-
value = 0.889).

In WP, the mean Canopy Diameters measured from the on-ground
data ranged between 0.18 and 4.2 m, with a median measurement of
0.98 m. For the CHM-based measurements, Canopy Diameters ranged
between 0.27 and 3.75 m, with a median measurement of 1.02 m. The
two distributions were not significantly different (Wilcoxon Rank-Sum
test, p-value = 0.254).

When considering all surveyed trees from the on-ground measure-
ments in RRE, the tree canopy diameters ranged between 0.17 and
11.7 m, with a median canopy diameter of 0.62 m. This value was
significantly different than the one obtained from the CHM-based
measurements (0.80 m; Wilcoxon Rank-Sum test, p-value<0.001).
Similarly, when considering only the top canopy, median tree height for
on-ground measurements was 0.71 m, which was also significantly
different from the CHM-based measurements (0.89 m; Wilcoxon Rank-
Sum test, p-value<0.001). Further analysis revealed that, while the
medians based on the CHMs and field data for the rehabilitated areas

Fig. 4. UAV-SfM data derived products: (a) Orthomosaic image; (b) Digital Surface Model; (c) Digital Terrain Model and (d) Canopy Height Model. Units are
expressed in meters.
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where still significantly different (Wilcoxon Rank-Sum test, p-value<
0.001), the medians for the natural areas were not significantly dif-
ferent when considering only the top canopy (Wilcoxon Rank-Sum test,
p-value = 0.602).

Results of the validation work that consisted of comparing on-
ground height and canopy diameter medians to UAV-SfM derived es-
timates (in cm) for each of the 41 plots can be seen in Fig. 7. Strong
correlations close to the one-to-one linear relationship (adjusted coef-
ficient of determination of 0.946 and 0.835 respectively) can be found
when trees under the main canopy are removed from the analysis
(Fig. 7b and d).

3.2.3. Above-ground biomass
Estimated AGB based on the UAV-SfM data in WP and natural areas

of RRE was consistently lower (between 10 and 20%) than that gen-
erated from the field data at each survey site (Table 2). We observed the
opposite pattern in the rehabilitated areas of RRE, where AGB estimates
from UAV-SfM data were consistently higher (~10%) than those from
field measurements when only the top canopy was considered
(Table 2). In WP, the estimated tree AGB median from the on-ground
measurements was 0.74 Kg. This value was not significantly different
than the value obtained from the CHM-based measurements (0.66 Kg;
Wilcoxon Rank-Sum test, p-value = 0.924).

Fig. 5. Final products showing a heterogeneous profile of heights with two distinct canopy stories: (a) Canopy Height Model (CHM) showing individual treetop
locations (black dots) and associated tree crown perimeter (black line) measured using the UAV-SfM method. (b) High definition orthomosaic image with crown
perimeters in white.

Fig. 6. Comparison between the average number of trees per ha identified by the watershed algorithm and the field data at the plot level using: a) All data and b) Top
Canopy data. The dashed line indicates the ideal one-to-one relationship between the two datasets. The red line corresponds to the fitted relationship between the two
data sets (for only Top Canopy: y = exp. (1.104 * ln (x) + 0.193)). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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When considering all surveyed trees from the on-ground measure-
ments in RRE, the tree AGB median was 3.48 Kg, which was sig-
nificantly different than the value obtained from the CHM-based mea-
surements (3.18 Kg; Wilcoxon Rank-Sum test, p-value = 0.009).

However, when considering only the top canopy, median tree AGB for
on-ground measurements was 3.85 Kg, which was not significantly
different from the CHM-based measurements (4.19 Kg; Wilcoxon Rank-
Sum test, p-value = 0.163).

Table 2
Summary of mangrove tree height and mean Canopy Diameter data measured in the field and from the UAV-SfM data.

Area Method N Height (m) Canopy diameter (m) AGB (t/ha)

Min Median Max Min Median Max

WP On-ground 344 0.77 1.80 3.70 0.18 0.98 4.20 13.6
UAV-SfM 283 0.71 1.80 3.33 0.27 1.02 3.75 11.2

RRE (All Trees) On-ground 2220 1.30 2.00 12.4 0.17 0.62 11.7 163.9 / 257.9a

UAV-SfM 1274 1.30 2.12 13.8 0.25 0.80 9.2 152.1 / 230.6a

RRE (Top Canopy) On-ground 1155 1.30 2.30 12.4 0.17 0.71 11.7 129.4 / 239.6a

UAV-SfM 917 1.30 2.64 13.8 0.25 0.89 9.2 149.5 / 214.4a

a Rehabilitated areas on the left and natural areas on the right.

Fig. 7. Comparison between the median heights (a and b) and median canopy diameters (c and d) from UAV-SfM data and the on-ground measurements at the plot
level using: All data (a and c) and Top Canopy data (b and d). The dashed line indicates the ideal one-to-one relationship between the two datasets. The red line
corresponds to the fitted relationship between the two data sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Results of the validation work that consisted of comparing on-
ground AGB estimates to UAV-SfM derived estimates (in tonnes per
hectare) for each of the 41 plots using both all data and only top canopy
can be seen in Fig. 8. Both models showed a strong correlation between
the two data sets (adjusted coefficient of determination of 0.932 and
0.917 respectively).

3.2.4. Cost-benefit analysis
The equipment, time and costs required for completing the data

acquisition, processing and analysis for both methodologies were tallied
separately in Table 3. After 100 days of surveys, the UAV-SfM method
can cover an area of 800 ha using a total of 1600 person-hours of data
acquisition and 600 person-hours of data processing and analysis. In
contrast, the on-ground surveys could only cover 3.2 ha of forest using
4000 person-hours of data acquisition and 300 person-hours of data
processing and analysis.

The results of the analysis show that the UAV-SfM method has the

potential to save a total of AU$ 57,040 per 100 survey days or AU$
48,914 per ha surveyed (Table 3). Field data offers AU$ 10,160 on
savings in terms of equipment (including software) when compared to
UAV-SfM methodology. However, staff salaries for data acquisition and
processing of on-ground measurements were almost double those of the
UAV-SfM methodology for the same category (AU$ 156,200 vs AU$
89,492 respectively). A day by day cost analysis revealed that the UAV-
SfM method is more expensive than on-ground surveys during the first
14 days of surveys, but becomes cost-effective on day 15 (AU$ 23,816
vs AU$ 24,154 respectively, Fig. 9).

4. Discussion

This study has demonstrated the ability of UAV-SfM data to estimate
AGB of mangrove ecosystems. Low-cost UAV imagery was used for the
creation of orthomosaic images, DSM, DTM and CHMs for nine survey
sites in the southeastern coast of Australia using Structure from Motion
procedures. There was a close correspondence between UAV-SfM de-
rived tree heights, average canopy diameters, tree density and ulti-
mately AGB estimates with those measured in the field. Other studies
have found that UAV-SfM data can be used as a tool for the retrieval of
vegetation structure characteristics (Dandois and Ellis, 2010; Messinger
et al., 2016; Panagiotidis et al., 2017; Zarco-Tejada et al., 2014).
However, very few have attempted to estimate AGB of mangrove eco-
systems from UAV-SfM derived CHMs due to the high tree density and
overlap of these ecosystems (Navarro et al., 2019; Otero et al., 2018).
Moreover, the use of UAV imagery is less expensive than on-ground
measurements (Table 3), manned flights imagery (Dustin, 2015; Matese
et al., 2015) and LiDAR systems (Sankey et al., 2017) while maintaining
forest biomass estimation accuracy.

4.1. Comparison between UAV-SfM and field data derived metrics

Out of the 344 trees measured in the field for WP, 82% (283 trees)
were detected using the UAV-SfM methods described in this study. A
similar value (79%) was obtained for RRE when only the top canopy
was considered (915 out of 1148). This value is consistent with other
studies with similar methods for tree detection from SfM derived pro-
ducts on high tree density forests (64%–96% Nevalainen et al., 2017;

Fig. 8. Comparison between the above-ground biomass estimates (in tonnes per ha) from UAV-SfM data and the on-ground measurements at the plot level using: a)
All data and b) Top Canopy data. The dashed line indicates the ideal one-to-one relationship between the two datasets. Whereas the red line corresponds to the fitted
linear relationship between the two data sets (for only Top Canopy: y = 0.948 * x + 4.997). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 3
Detailed costs and total cost in Australian dollars (AU$) for both forest in-
ventory data collection methods. Costs were based on 100 days of surveys
(average lifespan of UAV equipment) and the average annual salary of a
Research Assistant in Australia (AU$ 70,953).

Component Detailed costs

UAV-SfM method Field data method

Equipment UAVs: AU$ 6364
RTK GPS: AU$ 1150
Pix4D License: AU$
2770

Tape measures: $124
Rangefinder: $600

Data acquisition and
preparation

staff salaries: AU$
58,480
vehicle hire cost:
AU$ 6500
fuel cost: AU$ 3500

staff salaries: AU$
136,000
vehicle hire cost: AU$
6500
fuel cost: AU$ 3500

Data processing and analysis staff salaries: AU$
21,012

staff salaries: AU$ 10,200

Total AU$ 99,884 AU$ 156,924
Total (per ha) AU$ 125 AU$ 49,039
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82% in Wallace et al., 2016). This level of underestimation is within
accepted levels for forestry and carbon inventory needs (Sperlich et al.,
2014). The number of trees detected dropped to 57% when all trees
were considered for RRE (Table 2), however, this large number of non-
detected small trees, only accounts for an average of 9.1% of the total
biomass.

When considering only the top canopy, the method performed well
at low tree densities (< 0.8 trees per m2), but oversaturated at tree
densities over 0.8 trees per m2 and deviated from the one-to-one re-
lationship with on-ground data following an exponential curve (see
Fig. 6b). Canopies of trees of similar height to neighbouring trees often
intertwine in high tree density areas, resulting in the omission of trees
with highly overlapping crowns from UAV-SfM derived estimates. Si-
milarly, the smaller overlapping trees under the main canopy are often
not visible from the UAV point of view and therefore they are usually
missing from the CHM tree density estimates.

Moreover, when performing a canopy segmentation using a marker
controlled watershed algorithm over areas with missing trees, the ca-
nopy diameter estimates from the UAV-SfM tend to be slightly larger
(although not significantly different for WP and natural areas of RRE)
than those from the on-ground measurements at the lower end of the
distribution (see Table 2 and Fig. 7d). This is because the detected
treetops around which the canopies can propagate, tend to absorb the
canopies of trees with highly overlapping crowns that have not been
detected by the tree detection algorithm (Yin and Wang, 2019). This
problem is accentuated on rehabilitated areas of RRE, which have a
higher tree density than natural areas, and therefore have numerous
non-detected trees whose canopies are absorbed by the adjacent trees.
Consequently, canopy diameter obtained from the UAV-SfM data on
rehabilitated areas of RRE was significantly larger than that obtained
from on-ground data. This problem could be solved by applying a
higher minimum threshold below which a canopy cannot propagate for
the lower canopy story (0.9 instead of 0.8), which seems to cause the
shifted distribution.

In spite of UAV imagery being collected one year after the on-
ground measurements, tree height estimates from the UAV-SfM derived
CHMs have an extremely close correspondence with field-derived
measurements (Table 2). Mangrove tree heights and canopy diameters
were not likely to change by> 5 to 10 cm due to the slow growth rate
typical of mangroves in temperate and subtropical climates from one
year to the next (Macnae, 1966). Additionally, DTM generation

averaged an RMSE of 6.3 and 9 cm lower when compared to the GCP
heights (for WP and rehabilitated areas of RRE), which could explain
the null difference of tree height medians from both methodologies. The
higher RMSE for the DTM generation of natural areas of RRE is ex-
plained by the fact that less ground points are visible from the UAV
point of view due to the higher canopy heights and coverage typical of
mature natural areas. Ground points in these areas are usually found at
the shoreline or behind the mangroves, and consequently DTM is
usually generated by interpolation of these two areas. As mangrove
ecosystems tend to accumulate mud in the ground, higher ground
points than surrounding areas are expected to be found, which could
lead to the DTM being underestimated by the UAV method. However,
this method still performs better than other methodologies used on
mangrove ecosystems (Otero et al., 2018, which used a fixed value for
DTM generation of UAV data; or Fatoyinbo and Simard, 2013, which
estimated Canopy height with an overall root mean square error of
3.55 m using free satellite data).

UAV-SfM derived AGB estimates also showed a strong relationship
with on-ground measurements when using both all data and only top
canopy data. However, the best fitted linear relationship for only top
canopy (Fig. 8b) was closer to the ideal one-to-one relationship. UAV-
SfM data tends to slightly underestimate AGB at low on-ground AGB
estimates (< 100 t/ha), and slightly overestimate at high on-ground
AGB estimates (> 100 t/ha). This is counterintuitive when combined
with the results from the tree density estimates. Higher AGB estimates
would be expected in areas with high tree densities (which had lower
correlation with on-ground measured densities). However, closer in-
spection at the plot level revealed that the plots with higher tree den-
sities are those in the initial stages of colonization, with immature or
non-fully grown trees. These trees are on the low spectrum of height
(< 1.5 m for WP and<2 m for RRE) and canopy diameter (< 1 m for
both areas) metrics and consequently, tend to be the ones with lower
AGB estimates. As an example, one single tree of 4 m in height and
1.5 m in average canopy diameter holds more AGB than ten trees half
its size on both measurements.

The AGB estimates created using the UAV-SfM methods described in
this study were on average between 10 and 20% lower than those
generated from the on-ground data at the site level in natural areas.
This value is comparable to previous studies that use expensive LiDAR
or laser scanning systems (Jaakkola et al., 2010; Sankey et al., 2017) or
when assessing crops or plantation forests with clearly defined

Fig. 9. Comparison of costs per days of survey (in AU$) between the on-ground and the UAV-SfM methods.
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boundaries between trees (Bendig et al., 2014; Li et al., 2016; Vega
et al., 2015; Zahawi et al., 2015). Moreover, UAV-SfM data derived
metrics (height, canopy diameter and AGB) obtained in this study had
the highest correlation with on-ground measurements than any other
previous studies with mangroves (Navarro et al., 2019; Otero et al.,
2018).

4.2. Benefits of using UAV-SfM for retrieving forest inventory data from
mangrove ecosystems

The main advantage of using UAVs for mangrove forest monitoring
over traditional field measurements is the ability to survey broader
spatial areas over a shorter period of time. A single UAV flight can cover
an area of approximately 1 ha of forest in less than an hour (including
flight planning and set up) and, if necessary, one person alone would be
able to acquire all UAV data. In contrast, a team of five people with
experience in field sampling would have to work 8 h per day over
31 days to survey the same area on the ground (estimates based on the
time it took a team of 5 people to survey the 41 plots present in this
study).

Similarly to savings in personnel, the cost saving benefits of using
UAV-SfM technology for mangrove monitoring are significant when
compared to on-ground measurements. The total cost for 100 days
(average lifespan of UAV related technology) of surveys is AU$ 57,040
cheaper for UAVs than for on-ground measurements (Table 3). This
difference is accentuated when considering area covered, as UAV-SfM
costs drop to just AU$ 125 per ha, while on-ground costs are almost AU
$ 50 K per ha. Furthermore, despite having to do an initial investment
of AU$ 10,284 for equipment alone (which includes back up UAVs),
UAV-SfM become cost-effective after just 15 days of surveys when
compared to on-ground surveys (Fig. 9; AU$ 23,816 vs AU$ 24,154
respectively).

The UAV-SfM also facilitates monitoring of areas that are difficult to
access, especially near the water's edge where mangrove trees tend to
be higher and more densely packed. Moreover, UAVs are developing
extremely fast and you can now buy a drone with RTK GPS in-
corporated for under AU$ 10 K. While this might seem expensive, the
imagery obtained from this drone will be georeferenced with very high
precision without the need for placing GCPs on the ground, resulting in
additional time and cost savings. While this technology is still devel-
oping, this price is likely to reduce in the near future, making it an even
more cost-effective tool for monitoring mangrove ecosystems.

4.3. Limitations

This study has three major limitations, the first being that operation
of UAVs is restricted to optimal conditions. To effectively operate an
UAV, you need low wind speed (< 15 knots or 7.7 m/s), no rain, and
low tides to ensure weather conditions will not interfere with data
collection and processing. These restrictions greatly limit the amount of
days conducive to surveying, which affects the frequency and costs
associated with UAV surveys. Moreover, areas within no-fly zones (i.e.
near airports) are restricted for surveying without a Remote Operator's
Certificate (ReOC) license in Australia. Nonetheless, new changes to
UAV laws in Australia have softened the requirements for remote-pi-
loted aircraft under 2 kg (Allan et al., 2015).

The second limitation is that the UAV-method cannot detect un-
derstory trees and tends to saturate at high mangrove tree density.
However, this limitation has a minor effect on the AGB estimations, as
the non-detected trees tend to be the younger, not totally formed ones
(whose heights and canopy diameters, and consequently AGB estimates,
are on the lower end of the distribution) and hold on average only 9.1%
of the total AGB.

The third limitation is that this method is still dependant on on-
ground surveys to create the functions used to determine the variable
window size on Step 1 and have a general idea of the survey area.

Nevertheless, our method can make use of previously obtained forest
inventory data and also be implemented in areas with similar compo-
sition to those ground-based surveys. Additionally, an approach com-
bining our UAV-SfM method with multispectral information and/or
machine learning could be used to improve mangrove species identifi-
cation and consequently the accuracy of the AGB estimates using spe-
cies-specific allometric equations. This approach could potentially be
implemented in other regions such as tropical areas where mangrove
species composition is more diverse. However, this approach was out-
side the scope of this paper and could be the focus of future research.

5. Conclusions

Through this study, we showed that low-cost UAV-SfM provide an
accurate and efficient method for assessing the above-ground biomass
of mangrove forests in temperate and sub-tropical regions. We were
able to obtain accurate tree height and canopy diameter metrics from
UAV-SfM data that had a high correspondence with on-ground based
data. The methods described in this study opens the possibility for ea-
sily repeatable, low-cost UAV surveys for local managers by providing a
faster, more cost-effective approach for monitoring mangrove forests
over larger areas than traditional on-ground surveys while maintaining
forest inventory data accuracy. Additionally, as mangrove ecosystems
in Australia are likely to be impacted by climate change related issues,
the use of periodical UAV surveys for monitoring mangroves can lead to
better restoration and management understanding under changing cli-
matic conditions in temperate and sub-tropical areas.
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